Multi-Agent Inference in Social Networks: A Finite Population Learning Approach
نویسندگان
چکیده
منابع مشابه
Multi-Agent Inference in Social Networks: A Finite Population Approach∗
When people in a society want to make inference about some parameter, each person would potentially want to use data collected by other people. Information (data) exchange in social contexts is usually costly, so to make sound statistical decisions, people need to compromise between benefits and costs of information acquisition. Conflicts of interests and coordination will arise. Classical stat...
متن کاملCommunication Learning in Social Networks: Finite Population and the Rates
Following the Bayesian communication learning paradigm, we propose a finite population learning concept to capture the level of information aggregation in any given network, where agents are allowed to communicate with neighbors repeatedly before making a single decision. This concept helps determine the occurrence of effective information aggregation in a finite network and reveals explicit in...
متن کاملSocial Learning in a Multi-Agent System
In a persistent multi-agent system, it should be possible for new agents to benefit from the accumulated learning of more experienced agents. Parallel reasoning can be applied to the case of newborn animals, and thus the biological literature on social learning may aid in the construction of effective multi-agent systems. Biologists have looked at both the functions of social learning and the m...
متن کاملthe relationship between language and social capital in ilami kurdish: a sociopragmatic approach
چکیده زبان به عنوان یک وسیله در ایجاد و بازسازی سرمایه اجتماعی در چند دهه گذشته مورد توجه بوده است. اگر چه درباره سرمایه اجتماعی و سازه های مربوط به آن زیاد نوشته شده است ولی خیلی کم بر روی اینکه چطور زبان می تواند باعث ایجاد اعتماد یا بی اعتمادی بشود مطالعه ای انجام شده است. این مطالعه به منظور تحقق دو هدف انجام گرفته است. اول تلاش خواهد شد تا یک گونه شناسی از واژگانی که مردم کرد زبان شهر ا...
15 صفحه اولMulti-Agent Causal Models: Inference and Learning
First of all, single agent causal models, such as causal Bayesian networks, are extended to the multi-agent case. The motivation for doing this is that domains to be modeled become evermore complex. Therefore, models that represent such systems with a single centralized approach become hard to learn and maintain. Instead, several small models that represent a modular part of the domain are a mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2015
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2014.893885